pandas Cheat Sheet (via yhat)

pandas cheat sheetThe folks over at yhat just released a cheat sheet for pandas.  You can download the cheat sheet in PDF for here.

There’s a couple important functions that I use all the time missing from their cheat sheet (actually….there are a lot of things missing, but its a great starter cheat sheet).

A few things that I use all the time with pandas dataframes that are worth collecting in one place are provided below.

Renaming columns in a pandas dataframe:

df.rename(columns={'col1': 'Column_1', 'col2': 'Column_2'}, inplace=True)

Iterating over a pandas dataframe:

for index, row in df.iterrows():

Splitting pandas dataframe into chunks:

The function plus the function call will split a pandas dataframe (or list for that matter) into NUM_CHUNKS chunks. I use this often when working with the multiprocessing libary.

# This function creates chunks and returns them
def chunkify(lst,n):
    return [ lst[i::n] for i in xrange(n) ]

chunks = chunkify(df, NUMCHUNKS)

Accessing the value of a specific cell:

This will give you the value of the last row’s “COLUMN” cell.  This may not be the ‘best’ way to do it, but it gets the value


Getting rows matching a condition:

The below will get all rows in a pandas dataframe that match the criteria.  In addition to finding equality, you can do all the logical operators.

df[df.COLUMN == Criteria]

Getting rows matching multiple conditions:

This gets rows that match a criteria in COLUMN1 and those that match another criteria in COLUMN2

 df[(df.COLUMN1 == Criteria) & (df.COLUMN2 == Criteria_2) ]
newest oldest most voted
Karlijn Willems

Hi Eric!
You’re right that there is quite some stuff missing from this cheat sheet, but it was my intention when I first started out to make multiple cheat sheets, so you can probably expect more in the future. The code that you have added is amazing and I wanted to thank you for the feedback!


PS. If you want, check out my latest NumPy cheat sheet (; would love to hear your feedback!